Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthodont ; 33(2): 157-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740784

RESUMO

PURPOSE: To evaluate the effect of immersion in disinfecting solutions on the color stability of denture base resins and artificial teeth obtained by 3D printing. MATERIALS AND METHODS: Forty discs (15 × 3 mm) were obtained for each group: Lucitone 550 and Cosmos Denture 3D (denture base resins), Duralay and Cosmos TEMP 3D (artificial teeth resins). The discs were immersed in disinfectant solutions: Corega Tabs, 2% chlorhexidine digluconate, 0.25% sodium hypochlorite, and distilled water. Color measurements were obtained with a spectrophotometer before immersion in disinfectants and after the simulated periods of 6 and 12 months. Data (ΔE00 ) were submitted to mixed three-way ANOVA and Bonferroni post-test. RESULTS: For denture base resins, Cosmos Denture 3D showed greater color change regardless of the solution and immersion time. The immersion time of 6 months influenced the color change of the denture base resins regardless of the disinfectant solution. For the artificial teeth resins, the immersion time of 12 months showed a significant color change when compared to 6 months. Cosmos TEMP 3D showed greater color change for all solutions, except for 0.25% sodium hypochlorite. Duralay resin showed greater color change in 2% chlorhexidine, regardless of immersion time. CONCLUSIONS: For denture base resins, the immersion time significantly changed the color regardless of the solution. For artificial teeth resins, Cosmos TEMP 3D showed greater color changes in all solutions when compared to Duralay, except for 0.25% sodium hypochlorite. Chlorhexidine digluconate significantly changed the color of Duralay.


Assuntos
Clorexidina/análogos & derivados , Desinfetantes , Metilmetacrilatos , Dente Artificial , Hipoclorito de Sódio , Bases de Dentadura , Imersão , Teste de Materiais , Impressão Tridimensional , Propriedades de Superfície , Cor
2.
J Prosthodont ; 32(S1): 3-10, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35609138

RESUMO

PURPOSE: The aim of this study was to evaluate the bond strength between two types of artificial teeth with a 3D-printed denture base resin using different bonding agents. MATERIALS AND METHODS: Two types of artificial teeth were evaluated: 3D-printed (Cosmos TEMP) and prefabricated polymethylmethacrylate (Biotone) bonded to cylinders (2.5 mm in height and 5 mm in diameter) of 3D-printed denture bases (Cosmos Denture designing by Meshmixer and printed by Flashforge Hunter DLP Resin 3D Printer). Two combinations between denture base and artificial teeth were eveluated: Cosmos Denture - Biotone, n = 30, and Cosmos Denture - Cosmos TEMP, n = 30. For each combination, the specimens were randomly distributed according to the bonding agent: (1) autopolymerized acrylic resin-Duralay, n = 10; (2) 3D-printed resin Cosmos TEMP, n = 10; and (3) methylmethacrylate monomer (MMA) + 3D-printed resin Cosmos TEMP, n = 10, totaling 60 specimens. The application of MMA was done conditioning the tooth surface for 180 seconds; the other agents were applied on the same surface. The virtual design of the 3D-printed resin teeth was obtained by scanning the first maxillary molar of the prefabricated teeth as the same protocol of cylinders. The control group (n = 10) was a conventional heat-polymerized denture base resin (Lucitone 550) bonded to the prefabricated resin teeth (Biotone). The shear bond tests were performed by applying a perpendicular force to the artificial tooth - denture base resin, through a chisel at 1 mm/min until failure. Two-way ANOVA and Bonferroni post hoc tests (α = 0.05) were used for multiple comparisons. RESULTS: For the Biotone tooth, the bond strength was significantly higher using MMA + Cosmos TEMP (10.04 MPa), and similar to the control (11.84 MPa, p = 0.484). For the 3D-printed tooth (Cosmos TEMP), the bond strength using the agents Cosmos TEMP (9.57 MPa) and MMA + Cosmos TEMP (12.72 MPa) were similar to the control (11.84 MPa, p = 0.169 and p = 1, respectively), but different from each other (p = 0.016). CONCLUSIONS: From the results, it is recommended to use: MMA + Cosmos TEMP bonding agent for the Biotone tooth; and Cosmos TEMP or MMA + Cosmos TEMP bonding agents for the Cosmos TEMP tooth, both attached to the 3D-printed denture resin Cosmos Denture.


Assuntos
Colagem Dentária , Bases de Dentadura , Colagem Dentária/métodos , Dente Artificial , Polimetil Metacrilato/química , Metilmetacrilato , Impressão Tridimensional , Teste de Materiais , Propriedades de Superfície , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...